Dear Teachers,

During the listening tour, the Eureka Math Team enjoyed the opportunity to witness our curriculum being implemented in St. Charles classrooms. We listened carefully to the feedback you provided about additional resources that could support implementation and are excited to deliver a pilot version of a new resource, Eureka Math Homework Guides, intended to help bridge the gap between the classroom and home.

Our writers have begun creating Homework Guides to provide families with insight of the understandings and skills gained during each math lesson. The guides are designed to deliver guidance for the problems on the homework pages (K-5)/problem sets (6-12). The problems and their worked out solutions included in each Homework Guide were chosen intentionally and closely align with at least one problem on the homework/problem set.

After examining your curriculum maps, we created ten Homework Guides for each grade level, K-10, and have done our best to create these documents for immediate use. In order for these to support student learning, please make them available for families at home. Students and their families can use the Homework Guides to receive helpful hints when homework becomes challenging.

In order for you to help us continue to improve our curriculum and accompanying resources, we welcome any and all feedback you and/or your students' families can provide. After receiving feedback, our goal is to create a Homework Guide for every lesson in the curriculum and make them available to the public.

We are excited to provide you with this pilot set of Homework Guides and even more excited to improve this resource through your valued feedback.

Many Thanks,
The Eureka Math Team MATH

G3-M5-Lesson 5: Partition a whole into equal parts and define the equal parts to identify the unit fraction numerically.

Fill in the chart. Then, whisper the fractional unit.

If 1 fifth is shaded, then that rectangle must be partitioned into 5 equal parts (fifths). The other rectangle must be partitioned into 8 equal parts (eighths).

Draw two identical rectangles. Shade 1 fifth of one rectangle and 1 eighth of the other. Label the unit fractions. Use your rectangles to explain why $\frac{1}{5}$ is greater than $\frac{1}{8}$.

Sample student response:

G3-M5-Lesson 6: Build non-unit fractions less than one whole

from unit fractions.

Complete the number sentence. Estimate to partition each strip equally, write the unit fraction inside each unit, and shade the answer.

Mr. Stevens bought 8 liters of soda for a party. His guests drank 1 liter.
a. What fraction of the soda did his guests drink?

Sample student response:

His guests drank $\frac{1}{8}$ of the soda.

I'll draw a whole with 8 equal parts because Mr. Stephens bought a total of 8 liters of soda. I'll label each part $\frac{1}{8}$ to show that it represents 1 of the 8 liters. Then I'll shade 1 part because the guests drank 1 liter. I'll remember to label my picture and write a sentence to answer the question.

$>$
b. What fraction of the soda was left? Sample student response: $\frac{7}{8}$ of the soda was left.

G3-M5-Lesson 7: Identify and represent shaded and non-shaded

parts of one whole as fractions.

Whisper the fraction of the shape that is shaded. Then, match the shape to the amount that is not shaded.

Mom lights 10 birthday candles on the cake. Alexis blows out 9 candles. What fraction of the birthday candles are still lit? Draw and explain.

Sample student response:

There are a total of 10 candles and 9 are blown out. That leaves $\frac{1}{10}$ of the candles that are still lit.

I'll draw a whole with 10 parts because there are a total of 10 candles on the cake. Then I'll shade the 9 candles that Alexis blows out and count how many are left. I'll be sure to label all the parts of my diagram.

G3-M5-Lesson 8: Represent parts of one whole as fractions with

number bonds.

Show a number bond representing what is shaded and unshaded in each of the figures. Draw a different visual model that would be represented by the same number bond.

Sample student response:

This first part is just like the example above.

Draw a number bond with 2 parts showing the shaded and unshaded fractions of each figure. Decompose both parts of the number bond into unit fractions.

Sample student response:

G3-M5-Lesson 9: Build and write fractions greater than one whole using unit fractions.

Each shape represents 1 whole. Fill in the chart.

Estimate to draw and shade units on the fraction strips. Solve.

$$
7 \text { fourths }=\frac{7}{4} \quad 7 \text { fourths is the unit form. I can also write it as } \frac{7}{4} \text {. }
$$

| $\frac{1}{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Fourths is the unit. I need to partition each whole (fraction strip) into fourths, and then label each unit to show that it represents $\frac{1}{4}$. Seven tells me how many units to shade.

G3-M5-Lesson 10: Compare unit fractions by reasoning about their size using fraction strips.

Each fraction strip is 1 whole. All the fraction strips are equal in length. Color 1 fractional unit in each strip. Then, answer the questions below.

I'll color one part of each whole below.

Circle less than or greater than. Whisper the complete sentence.

I can draw fraction strips like the ones in the problem before to check which fraction is bigger.

Jerry feeds his dog $\frac{1}{5}$ cup of wet food and $\frac{1}{6}$ cup of dry food for dinner. Does he use more wet food or dry food? Explain your answer using pictures, numbers, and words.

Sample student response:

G3-M5-Lesson 11: Compare unit fractions with different-sized models representing the whole.

Label the unit fraction. In each blank, draw and label the same whole with a shaded unit fraction that makes the sentence true. There is more than 1 correct way to make the sentence true.

Luna drinks $\frac{1}{5}$ of a large water bottle. Gabriel drinks $\frac{1}{3}$ of a small water bottle. Gabriel says, "I drank more than you because $\frac{1}{3}>\frac{1}{5}$."
a. Use pictures and words to explain Gabriel's mistake.

Sample student response:

Gabriel can't compare how much water he and Luna drank. If the wholes are different then $1 / 5$ might be bigger than $1 / 3$ like in the picture I drew.

The important thing to notice is that the water bottles are different sizes. That means the wholes are different, so you can't compare the fractions!
b. How could you change the problem so that Gabriel is correct? Use pictures and words to explain. Sample student response:

I could change the problem to make the wholes the same size. Then $1 / 3$ would be greater than $1 / 5$. When the whole is the same the parts have to be smaller to make fifths than do to make thirds.

G3-M5-Lesson 12: Specify the corresponding whole when

presented with one equal part.

Each shape represents the given unit fraction. Estimate to draw a possible whole. Draw a number bond that matches.

The 5 in the fraction tells me that the unit is fifths, so there are 5 equal parts in the whole. Since this shape is a unit fraction, I'll use 5 copies of it to build my whole. There are lots of different shapes I could draw!

Sample student response:

G3-M5-Lesson 13: Identify a shaded fractional part in different ways depending on the designation of the whole.

The shape represents 1 whole. Write a unit fraction to describe the shaded part.	The shaded part represents 1 whole. Divide 1 whole to show the same unit fraction you wrote in Part (a).
a.	This time just the shaded part represents 1 whole. I have to think about how I can partition just the shaded part into halves, since the unit fraction in Part (a) is $\frac{1}{2}$. Since halves means 2 equal parts, I drew a dotted line to partition the shaded whole into 2 equal parts.
The whole shape represents 1 whole, and it's partitioned into 2 parts. 2 equal parts means halves, so the unit fraction is $\frac{1}{2} .1$ can write $\frac{1}{2}$ to represent the shaded part.	

Rope A

About how many copies of Rope C equal the length of Rope A? Draw number bonds to help you.

About 4 copies of Rope C equal the length of Rope A.

G3-M5-Lesson 14: Place fractions on a number line with

endpoints 0 and 1.

Draw a number bond for each fractional unit. Partition the fraction strip to show the unit fractions of the number bond. Use the fraction strip to help you label the fractions on the number line. Be sure to label the fractions at 0 and 1.

Thirds

A ribbon is 1 meter long. Mrs. Lee sews a bead every $\frac{1}{5}$ meter. The first bead is at $\frac{1}{5}$ meter. The last bead is at 1 meter. Draw and label a number line from 0 meters to 1 meter to show where Mrs. Lee sews beads. Label all the fractions, including 0 fifths and 5 fifths. Label 0 meters and 1 meter, too.

Sample student response:

ribbon

Mrs. Lee sews beads every $\frac{1}{5}$ meter, so her ribbon must be partitioned into 5 parts. I drew a number line to represent her ribbon, and then partitioned it into 5 parts. I made labels showing where she sews beads. Then I counted the fifths from left to right starting at 0 , and labeled them at each tick mark. Mrs. Lee sewed 5 beads on the ribbon.

