Dear Teachers,

During the listening tour, the Eureka Math Team enjoyed the opportunity to witness our curriculum being implemented in St. Charles classrooms. We listened carefully to the feedback you provided about additional resources that could support implementation and are excited to deliver a pilot version of a new resource, Eureka Math Homework Guides, intended to help bridge the gap between the classroom and home.

Our writers have begun creating Homework Guides to provide families with insight of the understandings and skills gained during each math lesson. The guides are designed to deliver guidance for the problems on the homework pages (K-5)/problem sets (6-12). The problems and their worked out solutions included in each Homework Guide were chosen intentionally and closely align with at least one problem on the homework/problem set.

After examining your curriculum maps, we created ten Homework Guides for each grade level, K-10, and have done our best to create these documents for immediate use. In order for these to support student learning, please make them available for families at home. Students and their families can use the Homework Guides to receive helpful hints when homework becomes challenging.

In order for you to help us continue to improve our curriculum and accompanying resources, we welcome any and all feedback you and/or your students' families can provide. After receiving feedback, our goal is to create a Homework Guide for every lesson in the curriculum and make them available to the public.

We are excited to provide you with this pilot set of Homework Guides and even more excited to improve this resource through your valued feedback.

Many Thanks,
The Eureka Math Team MATH

G5-M4-Lesson 17: Relate decimal and fraction multiplication.

Multiply and model. Rewrite each expression as a multiplication sentence with decimal factors.
1.
$\frac{3}{10} \times \frac{2}{10}$
$=\frac{3 \times 2}{10 \times 10}$
$=\frac{6}{100}$

When multiplying fractions, I multiply the two numerators, $3 \times$ 2 , and the two denominators, 10 $\times 10$, to get $\frac{6}{100}$.

Then I'll shade in $\frac{3}{10}$ of $\frac{2}{10}$ (6 squares).
2.

First, l'll shade in 1 and $\frac{2}{10}(120$

$$
\begin{aligned}
& \frac{3}{10} \times 1.2 \\
& =\frac{3}{10} \times \frac{12}{10} \\
& =\frac{3 \times 12}{10 \times 10} \\
& =\frac{36}{100}
\end{aligned}
$$

I'll rename 1.2 as an improper fraction of $\frac{12}{10}$, then I'll multiply across to get $\frac{36}{100}$.

3. Multiply.

I'll first rewrite the decimal as a fraction, then I'll multiply the two numerators and the two denominators to get $\frac{12}{10}$. Lastly, I'll rewrite it as a mixed number if possible.
$2 \times 0.6=1.2$
$0.2 \times 0.6=0.12$
$=2 \times \frac{6}{10}$
$=\frac{2 \times 6}{10}$
$=\frac{2}{10} \times \frac{6}{10}$
$0.02 \times 0.6=0.012$
$=\frac{12}{10}$
$=\frac{2 \times 6}{10 \times 10}$
$=\frac{12}{100}$
$=\frac{2}{100} \times \frac{6}{10}$
$=0.12$
$=1.2$
${ }^{=0.12}$
0.2 is 2 tenths. The fraction form is 2 out of 10 , or $\frac{2}{10}$. After multiplying, the answer is $\frac{12}{100}$ or 0.12 .

4. Sydney makes 1.2 liters of orange juice. If she pours 4 tenths of the orange juice in the glass, how many liters of orange juice are in the glass?
$\frac{4}{10}$ of $1.2 \mathrm{~L}=\frac{4}{10} \times 1.2 \quad$ There are 0.48 L of orange juice in the glass.
$=\frac{4}{10} \times \frac{12}{10}$

$=\frac{4 \times 12}{10 \times 10}$
$=\frac{48}{100}$
$=0.48$ \qquad

G5-M4-Lesson 18: Relate decimal and fraction multiplication.

Multiply using both fraction form and unit form.
1.

$$
\begin{aligned}
2.3 & \times 1.6=\frac{23}{10} \times \frac{16}{10} \\
& =\frac{23 \times 16}{100} \\
& =\frac{368}{100} \\
& =3.68
\end{aligned}
$$

230
$+\quad$
 $\left(\frac{2}{10}\right.$ and $\left.\frac{6}{10}\right)$, and then I multiply to get $\frac{368}{100}$, or 3.68.
2.

$$
\begin{aligned}
2.38 & \times 1.8=\frac{238}{100} \times \frac{18}{10} \\
& =\frac{238 \times 18}{1,000} \\
& =\frac{4,284}{1,000} \\
& =4.284
\end{aligned}
$$

238 hundredths
$\times \quad 18$ tenths

1904
$\begin{array}{r}2380 \\ \hline\end{array}$
4, 284 thousandths

Then, I'll multiply the 2 numbers as if they are whole numbers to get 4,284 . The product's unit is thousandths because hundredths times tenths is equal to thousandths.
23 tenths
$\times \quad 16$ tenths

138

368 hundredths

Then, l'll multiply the 2 numbers as if they are whole numbers to get 368 . The product's unit is hundredths because tenths times tenths is equal to hundredths.
3. A flower garden measures 2.75 meters by 4.2 meters.
a. Find the area of the flower garden.
$2.75 \mathrm{~m} \times 4.2 \mathrm{~m}=11.55 \mathrm{~m}^{2}$
The area of the flower garden is 11.55 square meters.

550

$$
+11000
$$

1 1,5 50 thousandths

b. The area of the vegetable garden is one and a half times that of the flower garden. Find the total area of the flower garden and the vegetable garden.
$11.55 \times 1.5=17.325$
$11.55+17.325=28.875$

1155 hundredths

\times
 15 tenths

5775
$\begin{array}{r}11550 \\ \hline\end{array}$
17,325 thousandths

11.550
17.325
$+\quad 1$
28.875

The total area of the flower garden and the vegetable garden is $28.875 \mathbf{~ m 2}$.

Lesson 18:

G5-M4-Lesson 19: Convert measures involving whole numbers, and solve multi-step word problems.

Convert. Express your answer as a mixed number, if possible.

1. 9 in $=$ \qquad ft

9 in = 9×1 in
$=9 \times \frac{1}{12} \mathrm{ft}$
$=\frac{9}{12} \mathrm{ft}$
$=\frac{3}{4} \mathrm{ft}$

Remember:

1 foot $=12$ inches. Thus, 1 inch $=\frac{1}{12}$ foot.

Since 9 inches is the same as 9 times 1 inch, l'll rename 1 inch as $\frac{1}{12}$ foot and then multiply. The answer is $\frac{9}{12}$ or $\frac{3}{4}$ foot.
2. $20 \mathrm{oz}=$ \qquad lb Remember: 1 pound = 16 ounces. Thus, 1 ounce $=\frac{1}{16}$ pound.
$=20 \times \frac{1}{16} \mathrm{lb}$
$=\frac{20}{16} \mathrm{lb}$
$=1 \frac{4}{16} \mathrm{lb}$
$=1 \frac{1}{4} \mathrm{lb}$
Since 20 ounces is the same as 20 times 1 ounce, I'll rename 1 ounce as $\frac{1}{16}$ pound and then multiply. The answer is $1 \frac{4}{16}$ or $1 \frac{1}{4}$ pounds.
3. Jack buys 14 ounces of peanuts.
a. What fraction of a pound of peanuts did Jack buy?
$14 \mathrm{oz}=$ \qquad lb
$14 \mathrm{oz}=14 \times 1 \mathrm{oz}$
$=14 \times \frac{1}{16} \mathrm{lb}$
$=\frac{14}{16} \mathrm{lb}$
$=\frac{7}{8} \mathrm{lb}$
Jack bought $\frac{7}{8}$ pounds of peanuts.
b. If a whole pound of peanut costs $\$ 8$, how much did Jack pay?
$\frac{7}{8}$ of $\$ 8=\frac{7}{8} \times 8$

$$
=\frac{7 \times 8}{8}
$$

$$
=\frac{56}{8}
$$

Seven eighths of $\$ 8$ is $\$ 7$.

$$
=7
$$

Jack paid $\$ 7$.

G5-M4-Lesson 20: Convert mixed unit measurements, and solve multi-step word problems.

Convert. Express the answer as a mixed number.

1. $2 \frac{2}{3} \mathrm{ft}=$ \qquad in

$$
\begin{aligned}
2 \frac{2}{3} \mathrm{ft} & =2 \frac{2}{3} \times 1 \mathrm{ft} \\
& =2 \frac{2}{3} \times 12 \mathrm{in} \\
& =\frac{8}{3} \times 12 \mathrm{in} \\
& =\frac{96}{3} \mathrm{in} \\
& =32 \mathrm{in}
\end{aligned}
$$

2. $2 \frac{7}{10} \mathrm{hr}=$ \qquad \min

$$
\begin{aligned}
2 \frac{7}{10} \mathrm{hr} & =2 \frac{7}{10} \times 1 \mathrm{hr} \\
& =2 \frac{7}{10} \times 60 \mathrm{~min} \\
& =(2 \times 60 \mathrm{~min})+\left(\frac{7}{10} \times 60 \mathrm{~min}\right) \\
& =(120 \mathrm{~min})+(42 \mathrm{~min}) \\
& =162 \mathrm{~min}
\end{aligned}
$$

I can also use the distributive property. I multiply 2×60 minutes and add that to the product of $\frac{7}{10} \times 60$ minutes.
3. Charlie buys $2 \frac{1}{4}$ pounds of apples for a pie. He needs 50 ounces of apples for the pie. How many more pounds of apples does he need to buy?

$2 \frac{1}{4} \mathrm{lb}=$ \qquad oz

$$
2 \frac{1}{4} \mathrm{lb}=2 \frac{1}{4} \times 1 \mathrm{lb}
$$

$$
=2 \frac{1}{4} \times 16 \mathrm{oz}
$$

$\begin{array}{r}360 z \\ \hline\end{array}$
14 oz
50 oz

$$
=\frac{9}{14} \times 16 \stackrel{4}{0}
$$

$$
=36 \mathrm{oz}
$$

$=\frac{9}{4} \times 16 / \mathrm{oz}$
First, I'll convert $2 \frac{1}{4}$ pounds
to ounces by multiplying by
16. $2 \frac{1}{4}$ pounds is equal to
$=\frac{9}{4} \times 16 / \mathrm{oz}$
First, I'll convert $2 \frac{1}{4}$ pounds
to ounces by multiplying by
16. $2 \frac{1}{4}$ pounds is equal to
$=\frac{9}{4} \times 16 / \mathrm{oz}$
$=36 \mathrm{oz}$
First, I'll convert $2 \frac{1}{4}$ pounds
to ounces by multiplying by
16. $2 \frac{1}{4}$ pounds is equal to 36 ounces.
$140 z=$ \qquad lb
$14 \mathrm{oz}=14 \times 1 \mathrm{oz}$

$$
14 \mathrm{oz}=14 \times 1 \mathrm{oz}
$$

$$
=14 \times \frac{1}{16} \mathrm{lb}
$$

$$
=\frac{14}{16} \mathrm{lb}
$$

$$
14 \mathrm{OZ}=\ldots \ldots \ldots
$$

$$
=\frac{7}{8} \mathrm{lb}
$$

Lastly, since the question asked how many more pounds does he need to buy, I'll convert 14 ounces to pounds. After simplifying, the answer is $\frac{7}{8}$ pounds.

Charlie needs to buy $\frac{7}{8}$ pounds of apples. $\longrightarrow \begin{aligned} & \text { Write a sentence to } \\ & \text { answer the question. }\end{aligned}$

G5-M4-Lesson 21: Explain the size of the product, and relate

fraction and decimal equivalence to multiplying a fraction by 1.

Fill in the blanks.
1.

$$
\frac{3}{5} \times 1=\frac{3}{5} \times \frac{6}{6}=\frac{18}{30}
$$

Remember:
Any number times

1, or a fraction equal to 1 , will be equal to the number itself.

2. Express each fraction as an equivalent decimal.
a. $\frac{1}{4} \times \frac{25}{25}=\frac{25}{100}=0.25$

b. $\frac{4}{5} \times \frac{2}{2}=\frac{8}{10}=0.8$

$$
10,100, \text { and } 1,000
$$

Since $\frac{21}{20}$ is a fraction greater than 1 , or an improper fraction, the equivalent decimal must also be greater than 1.

c. $\frac{21}{20} \times \frac{5}{5}=\frac{105}{100}=1.05$

and it is a factor of 100 and 1,000.

Since $3 \frac{21}{50}$ is a mixed number, the equivalent decimal must also be greater than 1 .
d. $3 \frac{21}{50} \times \frac{2}{2}=3 \frac{42}{100}=3.42$

3. Vivian has $\frac{3}{4}$ of a dollar. She buys a lollipop for 59 cents. Change both numbers into decimals, and tell how much money Vivian has after paying for the lollipop.
$\frac{3}{4}=\frac{3}{4} \times \frac{25}{25}$
59 cents $=\mathbf{\$ 0 . 5 9}$
$=\frac{75}{100}$
\$0. 75

- $\$ 0.59$
$=0.75$

Vivian has $\mathbf{\$ 0 . 1 6}$ left after paying the lollipop.

G5-M4-Lesson 22: Compare the size of the products to the size of

the factors.

1. Solve for the unknown. Rewrite each phrase as a multiplication sentence. Circle the scaling factor and put a box around the factor naming the number of meters.
a. $\frac{1}{2}$ as long as 8 meters $=$
\qquad meters
b. 8 times as long as $\frac{1}{2}$ meter $=$ \qquad meters

2. Draw a tape diagram to model each situation in Problem 1, and describe what happened to the number of meters when it was multiplied by the scaling factor.
a.

b.

In part (a), the scaling factor, $\frac{1}{2}$, is less than 1 so the number of meters decreased.
In part (b), the scaling factor, 8 , is greater than 1 so the number of meters increased.
3. Look at the inequalities in each box. Choose a single fraction to write in all three blanks that would make all three number sentences true. Explain how you know.
a.

$\frac{3}{4} \times \frac{4}{2}>\frac{3}{4}$	$2 \times \frac{4}{2}>2$

Multiplying by a factor greater than 1, like $\frac{4}{2}$, will make the product larger than the first factor shown. Any fraction greater than 1 will work.

b.

$$
\frac{3}{4} \times \frac{1}{3}<\frac{3}{4} \quad 2 \times \frac{1}{3}<2 \quad \frac{7}{5} \times \frac{1}{3}<\frac{7}{5}
$$

Multiplying by a factor less than 1, like $\frac{1}{3}$, will make the product smaller than the first factor shown. Any fraction less than 1 will work.

4. A company uses a sketch to plan an advertisement on the side of a building. The lettering on the sketch is $\frac{3}{4}$ inch tall. In the actual advertisement, the letters must be 20 times as tall. How tall will the letters be on the actual advertisement?

$$
\begin{aligned}
20 \times \frac{3}{4} & =20 \times \frac{3}{4} \\
& =\frac{20 \times 3}{4} \\
& =\frac{60}{4}=15
\end{aligned}
$$

The letters on the sketch have been scaled down to fit on the page; therefore, the letters on the actual advertisement will be larger. In order to find out how large the actual letters will be, I need to multiply 20 by $\frac{3}{4}$ inch.

The letters on the actual advertisement will be 15 inches tall.

G5-M4-Lesson 23: Compare the size of the products to the size of

the factors.

1. Sort the following expressions by rewriting them in the table.

$$
\begin{aligned}
& 13.89 \times 1.004 \\
& 0.3 \times 0.069
\end{aligned}
$$

602×0.489	$\boxed{102.03 \times 4.015}$
0.72×1.24	0.2×0.1

The product is the result of or answer to a multiplication expression.

Since 0.489 is less than 1 , if I multiplied it by 602 , the answer would be less than 602. I'll put this expression in the column on the left.

2. Write a statement using one of the following phrases to compare the value of the expressions.
is slightly more than is a lot more than is slightly less than is a lot less than
a. $4 \times 0.988 \ldots \quad$ is slightly less than $\quad 1.4 \begin{aligned} & \text { In this example, the product of } \\ & 4 \times 0.988 \text { is being compared to } \\ & \text { the factor } 4 . \text {. Since the scaling } \\ & \text { factor, } 0.988, \text { is less than } 1, \text { the } \\ & \text { product will be less than } 4 . \\ & \text { However, since the scaling } \\ & \text { factor, } 0.988 \text { is just slightly less } \\ & \text { than 1, the factor will also be } \\ & \text { slightly less than } 4 .\end{aligned}$
c. $1,725 \times 0.013$ \qquad 1,725
d. $\quad 89.001 \times 1.3$ \qquad is a lot more than 1.3

$$
\text { In this example, the product of } 89.001 \times 1.3 \text { is being compared to the }
$$ factor 1.3. Since the scaling factor, 89.001 , is more than 1 , the product will be more than 1.3. However, since the scaling factor, 89.001 is a lot more than 1, the factor will also be alot more than 1.3.

3. During science class, Teo, Carson, and Dhakir measure the length of their bean sprouts. Carson's sprout is 0.9 times the length of Teo's, and Dhakir's is 1.08 times the length of Teo's. Whose bean sprout is the longest? The shortest?

0.9 times the length of Teo's
0.9 is less than 1 , so that means Carson's sprout is shorter than Teo's.

Teo:

Dhakir:

1.08 is more than 1 , so that means Dhakir's sprout is longer than Teo's.

Dhakir's bean sprout is the longest.
Carson's bean sprout is the shortest.

G5-M4-Lesson 24: Solve word problems using fraction and

decimal multiplication.

1. A tube contains 20 mL of medicine. If each dose is $\frac{1}{8}$ of the tube, how many mL is each dose? Express your answer as a decimal.

Note: Some students may recognize that the fraction $\frac{1}{2}$ is equal to 0.5 without showing any work. Encourage your child to show the amount of work that is necessary for them to be successful. If they can do basic calculations mentally, allow them to do so!
2. A clothing factory uses $1,275.2$ meters of cloth a week to make shirts. How much cloth is needed to make $3 \frac{3}{5}$ times as many shirts?

1,275.2 $m=1,275 \frac{2}{10} m$

$1,275 \frac{2}{10} \mathrm{~m} \times 3 \frac{3}{5}=\left(1,275 \frac{2}{10} \times 3\right)+\left(1,275 \frac{2}{10} \times \frac{3}{5}\right)$

$$
=\left(3,825 \frac{6}{10}\right)+\left(\frac{12,752}{10} \times \frac{3}{5}\right)
$$

$$
=\left(3,825 \frac{6}{10}\right)+\left(\frac{12,752 \times 3}{10 \times 5}\right)
$$

$$
=\left(3,825 \frac{6}{10}\right)+\left(\frac{38,256}{50}\right)
$$

$$
=\left(3,825 \frac{6}{10}\right)+\left(765 \frac{6}{50}\right)
$$

$$
=\left(3,825 \frac{60}{100}\right)+\left(765 \frac{12}{100}\right)
$$

$$
=4,590 \frac{72}{100}=4,590.72
$$

4,590.72 meters of cloth are needed to make the shirts. MATH
3. There are $\frac{3}{4}$ as many boys as girls in a class of fifth-graders. If there are 35 students in the class, how many are girls?

G5-M4-Lesson 25: Divide a whole number by a unit fraction.

A unit fraction is any fraction with a numerator of 1 (e.g., $\frac{1}{2}, \frac{1}{9}, 1$ twelfth.)

1. Draw a tape diagram and a number line to solve.

$$
2 \div \frac{1}{2}=4
$$

$2 \div \frac{1}{2}$ I can think about this division expression in two ways. This time, I'll model
it by thinking, " 2 is half of what?" or "If 2 is half, what is the whole?"

My number line shows the same thing. If 2 is half, 4 is the whole.

Therefore, if 2 is half, 4 is the whole!
2. Divide. Then multiply to check.
a. $2 \div \frac{1}{3} \quad$ Again, I can think about this expression in two ways. I can think, "How many thirds are in 2 ?".

Or, I might ask, "If 2 is a third, what is the whole?".
$2 \div \frac{1}{3}=6$
Check: $6 \times \frac{1}{3}=\frac{6 \times 1}{3}=\frac{6}{3}=2$

3. A recipe for rolls calls for $\frac{1}{4}$ cup of sugar. How many batches of rolls can be made with 2 cups of sugar?

This problem is asking me to find how many fourths are in 2.

8 batches of rolls can be made with 2 cups of sugar.

G5-M4-Lesson 26: Divide a unit fraction by a whole number.

1. Solve and support your answer with a model or tape diagram. Write your quotient in the blank.

2. Divide. Then, multiply to check.
a. $\frac{\mathbf{1}}{\mathbf{4}} \div \mathbf{5}$

I can visualize a tape diagram. In my mind, I can see 1 fourth being partitioned into 5 equal units. Now, instead of seeing fourths, the tape is showing twentieths.
$\frac{5}{20} \div 5=5$ twentieths $\div 5=1$ twentieth $=\frac{1}{20}$
Check: $\frac{1}{20} \times 5=\frac{5}{20}=\frac{1}{4}$

First, l'll rewrite $\frac{1}{4}$ as $\frac{5}{20}$. Then, writing $\frac{5}{20}$ in unit form (5 twentieths) makes the division easier for me. I know that $5 \div 5$ is equal to 1 . Therefore, 5 twentieths $\div 5=1$ twentieth, or $\frac{1}{20}$.

I'll check my answer by multiplying the quotient, $\frac{1}{20}$, and the divisor, 5 , to get $\frac{1}{4}$. Since $\frac{1}{4}$ matched the dividend in the original expression, I know l've solved correctly.

```
Since Jim read }\frac{4}{5}\mathrm{ of the book, it
means he has }\frac{1}{5}\mathrm{ left to read.
1-\frac{4}{5}=\frac{1}{5}.
    Z
```

3. Tim has read $\frac{4}{5}$ of his book. He finishes the book by reading the same amount each night for 3 nights.
a. What fraction of the book does he read each of the 3 nights?

I'll use $\frac{1}{5}$ divided by 3 to find the fraction of book he reads each

$$
\begin{aligned}
\frac{1}{5} \div 3 & =\frac{3}{15} \div 3 \\
& =\frac{1}{15}
\end{aligned}
$$

night. First, l'll rename $\frac{1}{5}=\frac{3}{15}$.
Then, I'll divide 3 fifteenths $\div 3=1$ fifteenth, or $\frac{1}{15}$.

He reads $\frac{1}{15}$ of the book each night.
b. If he reads 6 pages on each of the 3 nights, how long is the book?

1 unit = 6 pages
15 units $=15 \times 6=90$ pages

Tim reads $\frac{1}{15}$, or 6 pages, each night.
So $\frac{1}{15}$ or 1 unit is equal to 6 pages.

The book has 90 pages.

